
Course Learning Outcomes

� Students shall demonstrate an understanding of the internal 
organization of a computer system through assembly language.

� Students shall design and simulate the data path and the control unit 
of a simple computer based on an instruction set.

� Students shall demonstrate an understanding of pipelining including 
instruction sequencing, register value forwarding, data interlocking.

� Students shall demonstrate an understanding of the basic 
concepts of multiprocessor and multi-core designs.

� Students shall demonstrate an understanding of the history and 
possible future of the field necessary for staying at the forefront 
of computing systems development (life-long learning).

Chapter 7 — Multicores, Multiprocessors, and Clusters — 1

Course Learning Outcomes

� Students shall demonstrate an understanding of the internal 
organization of a computer system through assembly language.

� Students shall design and simulate the data path and the control unit 
of a simple computer based on an instruction set.

� Students shall demonstrate an understanding of pipelining including 
instruction sequencing, register value forwarding, data interlocking.

� Students shall demonstrate an understanding of the basic concepts 
of multiprocessor and multi-core designs.

� Students shall demonstrate an understanding of the history and 
possible future of the field necessary for staying at the forefront of 
computing systems development (life-long learning).

Chapter 7 — Multicores, Multiprocessors, and Clusters — 2



Chapter 7

Multicores, 

Multiprocessors, and 

Clusters

Chapter 7 — Multicores, Multiprocessors, and Clusters — 4

Introduction

� Goal: connecting multiple computers
to get higher performance
� Multiprocessors

� Scalability, availability, power efficiency

� Job-level (process-level) parallelism
� High throughput for independent jobs

� Parallel processing program
� Single program run on multiple processors

� Multicore microprocessors
� Chips with multiple processors (cores)

§
9
.1

 In
tro

d
u
c
tio

n



Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Hardware and Software

� Hardware
� Serial: e.g., Pentium 4

� Parallel: e.g., quad-core Xeon e5345

� Software
� Sequential: e.g., matrix multiplication

� Concurrent: e.g., operating system

� Sequential/concurrent software can run on 
serial/parallel hardware
� Challenge: making effective use of parallel 

hardware

Chapter 7 — Multicores, Multiprocessors, and Clusters — 7

Parallel Programming

� Parallel software is the problem

� Need to get significant performance 
improvement

� Otherwise, just use a faster uniprocessor, 

since it’s easier!

� Difficulties

� Partitioning

� Coordination

� Communications overhead

§
7
.2

 T
h
e
 D

iffic
u
lty

 o
f C

re
a
tin

g
 P

a
ra

lle
l P

ro
c
e
s
s
in

g
 P

ro
g
ra

m
s



Chapter 7 — Multicores, Multiprocessors, and Clusters — 8

Amdahl’s Law

� Sequential part can limit speedup

� Example: 100 processors, 90× speedup?

� Tnew = Tparallelizable/100 + Tsequential

�

� Solving: Fparallelizable = 0.999

� Need sequential part to be 0.1% of original 
time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

=

+−

=

Chapter 7 — Multicores, Multiprocessors, and Clusters — 9

Scaling Example

� Workload: sum of 10 scalars, and 10 × 10 matrix 
sum
� Speed up from 10 to 100 processors

� Single processor: Time = (10 + 100) × tadd

� 10 processors
� Time = 10 × tadd + 100/10 × tadd = 20 × tadd

� Speedup = 110/20 = 5.5 (55% of potential)

� 100 processors
� Time = 10 × tadd + 100/100 × tadd = 11 × tadd

� Speedup = 110/11 = 10 (10% of potential)

� Assumes load can be balanced across 
processors



Chapter 7 — Multicores, Multiprocessors, and Clusters — 10

Scaling Example (cont)

� What if matrix size is 100 × 100?

� Single processor: Time = (10 + 10000) × tadd

� 10 processors

� Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

� Speedup = 10010/1010 = 9.9 (99% of potential)

� 100 processors

� Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

� Speedup = 10010/110 = 91 (91% of potential)

� Assuming load balanced

Chapter 7 — Multicores, Multiprocessors, and Clusters — 11

Strong vs Weak Scaling

� Strong scaling: problem size fixed

� As in example

� Weak scaling: problem size proportional to 
number of processors

� 10 processors, 10 × 10 matrix

� Time = 20 × tadd

� 100 processors, 32 × 32 matrix

� Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

� Constant performance in this example



Chapter 7 — Multicores, Multiprocessors, and Clusters — 12

Shared Memory

� SMP: shared memory multiprocessor

� Hardware provides single physical

address space for all processors

� Synchronize shared variables using locks

� Memory access time

� UMA (uniform) vs. NUMA (nonuniform)

§
7
.3

 S
h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Chapter 7 — Multicores, Multiprocessors, and Clusters — 13

Example: Sum Reduction

� Sum 100,000 numbers on 100 processor UMA
� Each processor has ID: 0 ≤ Pn ≤ 99

� Partition 1000 numbers per processor

� Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

� Now need to add these partial sums
� Reduction: divide and conquer

� Half the processors add pairs, then quarter, …

� Need to synchronize between reduction steps



Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

Message Passing

� Each processor has private physical 
address space

� Hardware sends/receives messages 
between processors

§
7
.4

 C
lu

s
te

rs
 a

n
d
 O

th
e
r M

e
s
s
a
g
e
-P

a
s
s
in

g
 M

u
ltip

ro
c
e
s
s
o
rs



Chapter 7 — Multicores, Multiprocessors, and Clusters — 16

Loosely Coupled Clusters

� Network of independent computers

� Each has private memory and OS

� Connected using I/O system

� E.g., Ethernet/switch, Internet

� Suitable for applications with independent tasks

� Web servers, databases, simulations, …

� High availability, scalable, affordable

� Problems

� Administration cost (prefer virtual machines)

� Low interconnect bandwidth

� c.f. processor/memory bandwidth on an SMP

Chapter 7 — Multicores, Multiprocessors, and Clusters — 19

Grid Computing

� Separate computers interconnected by 
long-haul networks

� E.g., Internet connections

� Work units farmed out, results sent back

� Can make use of idle time on PCs

� E.g., SETI@home, World Community Grid



Chapter 7 — Multicores, Multiprocessors, and Clusters — 20

Multithreading

� Performing multiple threads of execution in 
parallel
� Replicate registers, PC, etc.

� Fast switching between threads

� Fine-grain multithreading
� Switch threads after each cycle

� Interleave instruction execution

� If one thread stalls, others are executed

� Coarse-grain multithreading
� Only switch on long stall (e.g., L2-cache miss)

� Simplifies hardware, but doesn’t hide short stalls 
(eg, data hazards)

§
7
.5

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 7 — Multicores, Multiprocessors, and Clusters — 21

Simultaneous Multithreading

� In multiple-issue dynamically scheduled 
processor

� Schedule instructions from multiple threads

� Instructions from independent threads execute 

when function units are available

� Within threads, dependencies handled by 

scheduling and register renaming



Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

Multithreading Example

Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Instruction and Data Streams

� An alternate classification

§
7
.6

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Data Streams

Single Multiple

Instruction 
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE 
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

� SPMD: Single Program Multiple Data

� A parallel program on a MIMD computer

� Conditional code for different processors



Chapter 7 — Multicores, Multiprocessors, and Clusters — 30

History of GPUs

� Early video cards

� Frame buffer memory with address generation for 

video output

� 3D graphics processing

� Originally high-end computers (e.g., SGI)

� Moore’s Law ⇒ lower cost, higher density

� 3D graphics cards for PCs and game consoles

� Graphics Processing Units

� Processors oriented to 3D graphics tasks

� Vertex/pixel processing, shading, texture mapping,

rasterization

§
7
.7

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 7 — Multicores, Multiprocessors, and Clusters — 32

GPU Architectures

� Processing is highly data-parallel
� GPUs are highly multithreaded

� Use thread switching to hide memory latency
� Less reliance on multi-level caches

� Graphics memory is wide and high-bandwidth

� Trend toward general purpose GPUs
� Heterogeneous CPU/GPU systems

� CPU for sequential code, GPU for parallel code

� Programming languages/APIs
� DirectX, OpenGL

� C for Graphics (Cg), High Level Shader Language 
(HLSL)

� Compute Unified Device Architecture (CUDA)



Chapter 7 — Multicores, Multiprocessors, and Clusters — 33

Example: NVIDIA Tesla

Streaming 

multiprocessor

8 × Streaming

processors

Chapter 7 — Multicores, Multiprocessors, and Clusters — 34

Example: NVIDIA Tesla

� Streaming Processors
� Single-precision FP and integer units

� Each SP is fine-grained multithreaded

� Warp: group of 32 threads
� Executed in parallel,

� SIMD
8 SPs
× 4 clock cycles



Chapter 7 — Multicores, Multiprocessors, and Clusters — 36

Interconnection Networks

� Network topologies

� Arrangements of processors, switches, and links

§
7
.8

 In
tro

d
u
c
tio

n
 to

 M
u
ltip

ro
c
e
s
s
o
r N

e
tw

o
rk

 T
o
p
o
lo

g
ie

s

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

Chapter 7 — Multicores, Multiprocessors, and Clusters — 37

Multistage Networks



Chapter 7 — Multicores, Multiprocessors, and Clusters — 38

Network Characteristics

� Performance
� Latency per message (unloaded network)

� Throughput

� Congestion delays (depending on traffic)

� Cost

� Power

� Routability in silicon

Chapter 7 — Multicores, Multiprocessors, and Clusters — 54

Concluding Remarks

� Goal: higher performance by using multiple 

processors

� Difficulties

� Developing parallel software

� Devising appropriate architectures

� Many reasons for optimism

� Changing software and application environment

� Chip-level multiprocessors with lower latency, 

higher bandwidth interconnect

� An ongoing challenge for computer architects!

§
7
.1

3
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s


