
Course Learning Outcomes

� Students shall demonstrate an understanding of the internal 
organization of a computer system through assembly language.

� Students shall design and simulate the data path and the control unit 
of a simple computer based on an instruction set.

� Students shall demonstrate an understanding of pipelining including 
instruction sequencing, register value forwarding, data interlocking.

� Students shall demonstrate an understanding of the basic 
concepts of multiprocessor and multi-core designs.

� Students shall demonstrate an understanding of the history and 
possible future of the field necessary for staying at the forefront 
of computing systems development (life-long learning).
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Introduction

� Goal: connecting multiple computers
to get higher performance
� Multiprocessors

� Scalability, availability, power efficiency

� Job-level (process-level) parallelism
� High throughput for independent jobs

� Parallel processing program
� Single program run on multiple processors

� Multicore microprocessors
� Chips with multiple processors (cores)
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Hardware and Software

� Hardware
� Serial: e.g., Pentium 4

� Parallel: e.g., quad-core Xeon e5345

� Software
� Sequential: e.g., matrix multiplication

� Concurrent: e.g., operating system

� Sequential/concurrent software can run on 
serial/parallel hardware
� Challenge: making effective use of parallel 

hardware
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Parallel Programming

� Parallel software is the problem

� Need to get significant performance 
improvement

� Otherwise, just use a faster uniprocessor, 

since it’s easier!

� Difficulties

� Partitioning

� Coordination

� Communications overhead
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Amdahl’s Law

� Sequential part can limit speedup

� Example: 100 processors, 90× speedup?

� Tnew = Tparallelizable/100 + Tsequential

�

� Solving: Fparallelizable = 0.999

� Need sequential part to be 0.1% of original 
time

90
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Scaling Example

� Workload: sum of 10 scalars, and 10 × 10 matrix 
sum
� Speed up from 10 to 100 processors

� Single processor: Time = (10 + 100) × tadd

� 10 processors
� Time = 10 × tadd + 100/10 × tadd = 20 × tadd

� Speedup = 110/20 = 5.5 (55% of potential)

� 100 processors
� Time = 10 × tadd + 100/100 × tadd = 11 × tadd

� Speedup = 110/11 = 10 (10% of potential)

� Assumes load can be balanced across 
processors
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Scaling Example (cont)

� What if matrix size is 100 × 100?

� Single processor: Time = (10 + 10000) × tadd

� 10 processors

� Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

� Speedup = 10010/1010 = 9.9 (99% of potential)

� 100 processors

� Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

� Speedup = 10010/110 = 91 (91% of potential)

� Assuming load balanced
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Strong vs Weak Scaling

� Strong scaling: problem size fixed

� As in example

� Weak scaling: problem size proportional to 
number of processors

� 10 processors, 10 × 10 matrix

� Time = 20 × tadd

� 100 processors, 32 × 32 matrix

� Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

� Constant performance in this example
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Shared Memory

� SMP: shared memory multiprocessor

� Hardware provides single physical

address space for all processors

� Synchronize shared variables using locks

� Memory access time

� UMA (uniform) vs. NUMA (nonuniform)
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Example: Sum Reduction

� Sum 100,000 numbers on 100 processor UMA
� Each processor has ID: 0 ≤ Pn ≤ 99

� Partition 1000 numbers per processor

� Initial summation on each processor

sum[Pn] = 0;
for (i = 1000*Pn;

i < 1000*(Pn+1); i = i + 1)
sum[Pn] = sum[Pn] + A[i];

� Now need to add these partial sums
� Reduction: divide and conquer

� Half the processors add pairs, then quarter, …

� Need to synchronize between reduction steps
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Example: Sum Reduction

half = 100;

repeat

synch();

if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];

/* Conditional sum needed when half is odd;

Processor0 gets missing element */

half = half/2; /* dividing line on who sums */

if (Pn < half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);
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Message Passing

� Each processor has private physical 
address space

� Hardware sends/receives messages 
between processors
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Loosely Coupled Clusters

� Network of independent computers

� Each has private memory and OS

� Connected using I/O system

� E.g., Ethernet/switch, Internet

� Suitable for applications with independent tasks

� Web servers, databases, simulations, …

� High availability, scalable, affordable

� Problems

� Administration cost (prefer virtual machines)

� Low interconnect bandwidth

� c.f. processor/memory bandwidth on an SMP
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Grid Computing

� Separate computers interconnected by 
long-haul networks

� E.g., Internet connections

� Work units farmed out, results sent back

� Can make use of idle time on PCs

� E.g., SETI@home, World Community Grid
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Multithreading

� Performing multiple threads of execution in 
parallel
� Replicate registers, PC, etc.

� Fast switching between threads

� Fine-grain multithreading
� Switch threads after each cycle

� Interleave instruction execution

� If one thread stalls, others are executed

� Coarse-grain multithreading
� Only switch on long stall (e.g., L2-cache miss)

� Simplifies hardware, but doesn’t hide short stalls 
(eg, data hazards)
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Simultaneous Multithreading

� In multiple-issue dynamically scheduled 
processor

� Schedule instructions from multiple threads

� Instructions from independent threads execute 

when function units are available

� Within threads, dependencies handled by 

scheduling and register renaming
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Multithreading Example

Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Instruction and Data Streams

� An alternate classification
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Data Streams

Single Multiple

Instruction 
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE 
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

� SPMD: Single Program Multiple Data

� A parallel program on a MIMD computer

� Conditional code for different processors
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History of GPUs

� Early video cards

� Frame buffer memory with address generation for 

video output

� 3D graphics processing

� Originally high-end computers (e.g., SGI)

� Moore’s Law ⇒ lower cost, higher density

� 3D graphics cards for PCs and game consoles

� Graphics Processing Units

� Processors oriented to 3D graphics tasks

� Vertex/pixel processing, shading, texture mapping,

rasterization
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GPU Architectures

� Processing is highly data-parallel
� GPUs are highly multithreaded

� Use thread switching to hide memory latency
� Less reliance on multi-level caches

� Graphics memory is wide and high-bandwidth

� Trend toward general purpose GPUs
� Heterogeneous CPU/GPU systems

� CPU for sequential code, GPU for parallel code

� Programming languages/APIs
� DirectX, OpenGL

� C for Graphics (Cg), High Level Shader Language 
(HLSL)

� Compute Unified Device Architecture (CUDA)
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Example: NVIDIA Tesla

Streaming 

multiprocessor

8 × Streaming

processors
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Example: NVIDIA Tesla

� Streaming Processors
� Single-precision FP and integer units

� Each SP is fine-grained multithreaded

� Warp: group of 32 threads
� Executed in parallel,

� SIMD
8 SPs
× 4 clock cycles
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Interconnection Networks

� Network topologies

� Arrangements of processors, switches, and links
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Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected
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Multistage Networks
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Network Characteristics

� Performance
� Latency per message (unloaded network)

� Throughput

� Congestion delays (depending on traffic)

� Cost

� Power

� Routability in silicon
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Concluding Remarks

� Goal: higher performance by using multiple 

processors

� Difficulties

� Developing parallel software

� Devising appropriate architectures

� Many reasons for optimism

� Changing software and application environment

� Chip-level multiprocessors with lower latency, 

higher bandwidth interconnect

� An ongoing challenge for computer architects!
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